Calculate the force of attraction between an electron and a proton in a hydrogen atom.

Solution

A hydrogen atom is just a proton and an electron. The separation distance between them is simply the radius of the hydrogen atom.

$$r = 5.29 \times 10^{-19} \text{ m}$$

$$Q = e = 1.60 \times 10^{-19} \text{ C}$$

$$Q = e^{-1.60 \times 10^{-19} \text{ C}}$$

$$Q = e^{1.60 \times 10^{-19} \text{ C}}$$

$$Q = e^{-1.60 \times 10^{-19} \text{ C}}$$

$$Q = e^{-1.60 \times 10^{-19} \text{ C}}$$

$$Q = e^{-1.60 \times 10^{-19} \text{ C}}$$

$$Q = e$$

How many electrons make up a charge of -30.0 μ C?

Solution

$$g = -30.0 \,\mu \,C = -30 \times 10^{-6} \,C$$

$$e^{-} = -1.60 \times 10^{-19} \,C$$

$$N = \frac{-30 \times 10^{-6}}{-1.6 \times 10^{-19}}$$

Particles of charge +70, +48, and -80 μC are placed in a line as shown in the figure. The center one is 0.35m from each of the others. Calculate the net force on the leftmost charge due to the other two.

Solution

The net free on A is the sum of the forces
$$F_{AB}$$
 and F_{BC}

$$\begin{cases}
F_{AB} & F_{AC} \\
A
\end{cases}$$

$$\begin{cases}
F_{AB} & F_{AC} \\
A
\end{cases}$$

$$\begin{cases}
F_{AB} & F_{AC} \\
A
\end{cases}$$

$$\begin{cases}
F_{AB} & F_{AC} \\
F_{AB} & F_{AC}
\end{cases}$$

$$\begin{cases}
F_{AB} & F_{AC} \\
F_{AB} & F_{AC}
\end{cases}$$

$$\begin{cases}
F_{AB} & F_{AC} \\
F_{AB} & F_{AC}
\end{cases}$$

$$\begin{cases}
F_{AB} & F_{AC} \\
F_{AB} & F_{AC}
\end{cases}$$

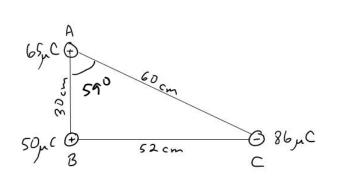
$$\begin{cases}
F_{AB} & F_{AC} \\
F_{AB} & F_{AC}
\end{cases}$$

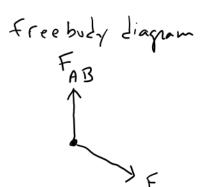
$$\begin{cases}
F_{AB} & F_{AC} \\
F_{AB} & F_{AC}
\end{cases}$$

$$\begin{cases}
F_{AB} & F_{AC} & F_{AC}
\end{cases}$$

$$\begin{cases}
F_{AB} & F_{AC} & F_{AC}
\end{cases}$$

$$\begin{cases}
F_{AB} & F_{AC}
\end{cases}$$

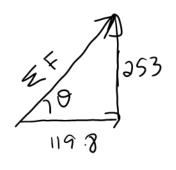

$$F_{AB} & F_{AC}
\end{cases}$$


$$\begin{cases}
F_{AB} & F_{AC}
\end{cases}$$

$$F_{AB} & F_{AC}$$

Three charged particles are arranged in a triangle as shown in the figure below. Find the net electric force on

particle A.



F =	KGAGB (CAB)2	_	325 N
-----	-----------------	---	-------

FAB	Force	θ	
	Fas	ๆ0°	
FAC	FAC	329°)
	ラド	65°	

Force	Θ	X	У
Fas	90°	0	325
Fac	329°	119,8	-72.0
ΣF	65°	119.8	253.0

